

Riva Bond LC liquid

SDI (North America) Inc.

Version No: 7.1

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Issue Date: **10/03/2023** Print Date: **21/11/2023** L.GHS.USA.EN

SECTION 1 Identification

Product Identifier

Product name	Riva Bond LC liquid
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Relevant identified uses

Professional dental use: Riva Bond LC liquid is to be used with the Riva Bond LC powder as a light-cured dental cement bond for dental restorations by dental professionals.

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	SDI (North America) Inc.	SDI Limited	SDI HOLDINGS PTY LTD DO
Address	1279 Hamilton Parkway Itasca IL 60143 United States	3-15 Brunsdon Street Bayswater VIC 3153 Australia	Rua Dr. Reinaldo Schmithausen 3141 – Cordeiros Itajaí – SC – CEP 88310-004 Brazil
Telephone	+1 630 361 9200	+61 3 8727 7111	+55 11 3092 7100
Fax	Not Available	+61 3 8727 7222	Not Available
Website	www.sdi.com.au	www.sdi.com.au	http://www.sdi.com.au/
Email	USA.Canada@sdi.com.au	info@sdi.com.au	Brasil@sdi.com.au
Registered company name	SDI Germany GmbH		
Address	Hansestrasse 85 Cologne D-51149 Germany		
Telephone	+49 0 2203 9255 0		
Fax	+49 0 2203 9255 200		
Website	www.sdi.com.au		

Emergency phone number

Email

Association / Organisation	SDI Limited	CHEMWATCH EMERGENCY RESPONSE (24/7)
Emergency telephone numbers	131126 Poisons Information Centre	+1 855-237-5573
Other emergency telephone numbers	+61 3 8727 7111	+61 3 9573 3188

Once connected and if the message is not in your preferred language then please dial 01

germany@sdi.com.au

Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02

SECTION 2 Hazard(s) identification

Classification of the substance or mixture NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1A, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Carcinogenicity Category 1B, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3

Version No: 7.1

Page 2 of 12 Riva Bond LC liquid

Issue Date: 10/03/2023 Print Date: 21/11/2023

Label elements

Hazard pictogram(s)

Signal word Danger

Hazard statement(s)

H302	Harmful if swallowed.
H314	Causes severe skin burns and eye damage.
H317	May cause an allergic skin reaction.
H335	May cause respiratory irritation.
H350	May cause cancer.
H373	May cause damage to organs through prolonged or repeated exposure.
H412	Harmful to aquatic life with long lasting effects.

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P261	Avoid breathing mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P202	Do not handle until all safety precautions have been read and understood.
P272	Contaminated work clothing must not be allowed out of the workplace.

Precautionary statement(s) Response

SWALLOWED: Rinse mouth. Do NOT induce vomiting. If more than 15 mins from Doctor, INDUCE VOMITING (if conscious).
ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.
IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
exposed or concerned: Get medical advice/ attention.
nmediately call a POISON CENTER/doctor/physician/first aider.
ON SKIN: Wash with plenty of water.
/ash contaminated clothing before reuse.
all a POISON CENTER/doctor/physician/first aider/if you feel unwell.
et medical advice/attention if you feel unwell.
skin irritation or rash occurs: Get medical advice/attention.
ake off contaminated clothing and wash it before reuse.
SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
INHALED: Remove person to fresh air and keep comfortable for breathing.
inse mouth.
e s

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name

Version No: 7.1 Page 3 of 12 Issue Date: 10/03/2023 Print Date: 21/11/2023

Riva Bond LC liquid

CAS No	%[weight]	Name
9003-01-4	15-25	acrylic acid homopolymer
87-69-4	1-5	tartaric acid
868-77-9	25-40	2-hydroxyethyl methacrylate
Not Available	5-15	dimethacrylate cross-linker
Not Available	10-20	acidic monomer

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 First-aid measures

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Seek medical attention.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. Seek medical attention.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Fire-fighting measures

Extinguishing media

Use dry chemical or foam.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.		
Special protective equipment a	and precautions for fire-fighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 		
Fire/Explosion Hazard	 Non combustible. Not considered a significant fire risk, however containers may burn. Decomposes on heating and produces: carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit clouds of acrid smoke 		

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

May emit corrosive fumes.

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- ► Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ► Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.

Version No: 7.1 Page 4 of 12 Issue Date: 10/03/2023 Print Date: 21/11/2023

Riva Bond LC liquid

 Wipe up. Place in a suitable, labelled container for waste disposal. Moderate hazard. ▶ Clear area of personnel and move upwind. ▶ Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. **Major Spills** ► Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. ▶ Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs
- Use in a well-ventilated area. Avoid contact with moisture.

Safe handling

- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

- Store in original containers. Keep containers securely sealed.
- ▶ Store in a cool, dry, well-ventilated area. Other information
 - ▶ Store away from incompatible materials and foodstuff containers.
 - Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Store between 4 and 25 deg C.

Conditions for safe storage, including any incompatibilities

Suitable container	DO NOT repack. Use containers supplied by manufacturer only.
Storage incompatibility	None known

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3		
tartaric acid	1.6 mg/m3	17 mg/m3	100 mg/m3		
2-hydroxyethyl methacrylate	1.9 mg/m3	21 mg/m3	1,000 mg/m3		

Ingredient	Original IDLH	Revised IDLH
acrylic acid homopolymer	Not Available	Not Available
tartaric acid	Not Available	Not Available
2-hydroxyethyl methacrylate	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating Occupational Exposure Band Limit		
acrylic acid homopolymer	E	≤ 0.01 mg/m³	
tartaric acid	E	≤ 0.01 mg/m³	
2-hydroxyethyl methacrylate	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

NOTE D: Certain substances which are susceptible to spontaneous polymerisation or decomposition are generally placed on the market in a stabilised form. It is in this form that they

Version No: 7.1 Page 5 of 12 Issue Date: 10/03/2023

Riva Bond LC liquid

Print Date: 21/11/2023

are listed on Annex I

When they are placed on the market in a non-stabilised form, the label must state the name of the substance followed by the words "non-stabilised" European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range		
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents		
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity		
3: Intermittent, low production.	3: High production, heavy use		
4: Large hood or large air mass in motion	4: Small hood-local control only		

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

Hands/feet protection

- ► Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber
- Rubber Gloves

Body protection

See Other protection below No special equipment needed when handling small quantities.

OTHERWISE:

Other protection

Overalls. Barrier cream.

Eyewash unit.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor Maximum gas/vapour concentration present in air p.p.m. (by volume)		Half-face Respirator	Full-Face Respirator	
up to 10	1000	A-AUS / Class1 P3	-	
up to 50	1000	-	A-AUS / Class 1 P3	

Version No: 7.1 Page 6 of 12 Issue Date: 10/03/2023 Print Date: 21/11/2023

Riva Bond LC liquid

5000 Airline * up to 50 up to 100 5000 A-2 P3 10000 up to 100 A-3 P3 100+ Airline**

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Slightly yellowish liquid with slight characteristic odour, mixes with water.			
Physical state	Liquid	Relative density (Water = 1)	1.2	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	1-2	Decomposition temperature (°C)	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	~100	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	approx 2.3	Gas group	Not Available	
Solubility in water	Miscible	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	<1	VOC g/L	Not Available	

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Stable under controlled storage conditions provided material contains adequate stabiliser / polymerisation inhibitor. Bulk storages may have special storage requirements WARNING: Gradual decomposition in strong, sealed containers may lead to a large pressure build-up and subsequent explosion. Rapid and violent polymerisation possible at temperatures above 32 deg c.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation hazard is increased at higher temperatures.
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand

Version No: 7.1 Page 7 of 12 Issue Date: 10/03/2023

Riva Bond LC liquid

Print Date: 21/11/2023

Eye

Evidence exists, or practical experience predicts, that the material may cause eve irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Birra Barra III O Francis	TOXICITY	IRRITATION
Riva Bond LC liquid	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irreversible damage) ^[1]
rylic acid homopolymer	Inhalation(Rat) LC50: >5.1 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: 146-468 mg/kg ^[1]	
	TOXICITY	IRRITATION
tartaric acid	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available
	Oral (Rat) LD50: >=2000<=5000 mg/kg ^[1]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >3000 mg/kg ^[2]	Eye (rabbit): SEVERE *post-exposure
ydroxyethyl methacrylate	Oral (Rat) LD50: >=2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit): non-irritating* * Rohm & Haas
		Skin: no adverse effect observed (not irritating) ^[1]

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Polycarboxylates are of low toxicity by all exposure routes examined.

Homopolymers(P-AA) are of low acute toxicity to the rat (LD50 > 5 g/kg bw/d) and are not irritating to the rabbit s skin and, at the most, slightly irritating to the eye. Further P-AA has no sensitising potential.

The adverse effect after repeated inhalation dosing (91-d/rat) was a mild, reversible pulmonary irritation. This effect is considered as not substance related owing to the physical property of the respirable dust, which caused local and not systemic lung effects.

There was neither evidence for a genotoxic potential of PAA using a variety of genetic endpoints in-vitro and in-vivo, nor for developmental toxicity or reprotoxicity in the rat. Based upon the available data, it is considered that exposure to polycarboxylates does not imply any particular hazard to humans

The Cosmetic Ingredient Review (CIR) Expert Panel noted that these crosslinked alkyl acrylates are macromolecules that are not expected to pass through the stratum corneum of the skin, so significant dermal absorption is not expected. Therefore, topically applied cosmetics are not expected to result in systemic or reproductive and developmental toxicity or to have genotoxic or carcinogenic effects upon use The Panel noted that cosmetic products containing these ingredients are reportedly used around the eyes, on the lips, and on other mucous membranes. Thus, crosslinked alkyl acrylates could be absorbed systemically through the relatively moist in stratum cornea of the conjunctiva, lips, and other mucous membranes, and through ingestion when applied to the lips. However, the Panel noted that any absorption through healthy intact mucous membranes is likely to be not significant primarily because of the relatively large molecular sizes. Furthermore, the chemically inert nature of the polymers precludes degradation to smaller absorbable species.

ACRYLIC ACID HOMOPOLYMER

Absorption of the polymers and their residual monomers in cosmetic products also would be limited after application to the lips or eye area based on the relatively small fractions of the applied products that might be inadvertently ingested or make direct contact with the conjunctiva. The Carbomers (Carbopols) are synthetic, high molecular weight, nonlinear polymers of acrylic acid, cross-linked with a polyalkenyl polyether.

The Carbomer polymers are used in cosmetics and emulsifying agents at concentrations up to 50%. Acute oral animal studies showed that Carbomers-910, -934, -934P, -940, and -941 have low toxicities when ingested. Rabbits showed minimal skin irritation and zero to moderate eye irritation when tested with Carbomers-910 and -934. Subchronic feeding of rats and dogs with Carbomer-934 in the diet resulted in lower than normal body weights, but no pathological changes were observed. Dogs chronically fed Carbomer-934P manifested gastrointestinal irritation and marked pigment deposition within Kupffer cells of the liver. Clinical studies with Carbomers showed that these polymers have low potential for skin irritation and sensitization at concentrations up to 100%. Carbomer-934 demonstrated low potential for phototoxicity and photo-contact allergenicity. On the basis of the available information presented and as qualified in the report, it is concluded that the Carbomers are safe as cosmetic ingredients.

Little toxicity data is available for acrylic crosspolymers; the acute dermal and oral toxicity data that were found indicated that these ingredients are not very toxic. The little genotoxicity data that were available reported negative results in Ames tests. Carcinogenicity data were not found in the published literature for the polymers, but data were available for the monomers.

In an alternative method study, acrylates/vinyl neodecanoate crosspolymer was predicted to be a non-irritant. The non-human studies reported no to slight irritation with undiluted and weak sensitization with 2% aq., acrylates/C10-30 alkyl acrylate crosspolymer, no irritation with acrylates crosspolymer at 30% in olive oil, and no irritation or sensitization with sodium acrylates crosspolymer-2 (concentration not specified). Mostly, human testing with undiluted acrylates/C10-30 alkyl acrylate crosspolymer, acrylates crosspolymer, and acrylates/ethylhexyl acrylate crosspolymer, up to 2.5% aq. acrylates/vinyl isodecanoate crosspolymer, 1% aq. dilutions of formulations containing 2% acrylates/vinyl neodecanoate crosspolymer, and formulations containing up to 2.6% lauryl methacrylate/glycol dimethacrylate crosspolymers do not indicate any dermal irritation or sensitization. The only exception was a weak irritant response noted during an intensified Shelanski human repeated insult

Version No: **7.1** Page **8** of **12** Issue Date: **10/03/2023**

Riva Bond LC liquid

Print Date: 21/11/2023

patch test (HRIPT) with undiluted acrylates/C10-30 alkyl acrylate crosspolymer.

Alternative test methods for ocular irritation indicated that acrylates/vinyl isodecanoate crosspolymer and a formulation containing 1% lauryl methacrylate/glycol dimethacrylate crosspolymer are not likely ocular irritants. In studies using rabbits, undiluted acrylates/C10-30 alkyl acrylate crosspolymer produced minimal to moderate irritation, and it was considered a borderline irritant in unrinsed rabbit eyes. Acrylates crosspolymer, at 50% in olive oil,and sodium acrylates crosspolymer-2 did not appear to be ocular irritants in rabbit eyes. Two different risk assessments evaluating the carcinogenic endpoint for benzene that may be present in acrylates/ C10-30 alkyl acrylates crosspolymer resulted in different lifetime risk. One found that the risk was within the range associated with a 10exp 6 cancer risk, while the other reported a 20-fold greater risk. Final Safety Assessment: Crosslinked Alkyl Acrylates as Used in Cosmetics. Nov 2011

Cosmetic Ingredient Review (CIR) Expert Panel

http://ntp.niehs.nih.gov/ntp/roc/nominations/2013/publiccomm/attachmentcir_508.pdf

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.

Convulsions, haemorrhage recorded.

for simple alpha-hydroxy carboxylic acids and their salts:

The US Food and Drug Administration (FDA) received a total of 114 adverse dermatologic experience reports for alpha-hydroxy acids (AHA)-containing skin care products between 1992 and February 2004, with the maximum number in 1994. The reported adverse experiences included burning (45), dermatitis or rash (35), swelling (29), pigmentary changes (15), blisters or welts (14), skin peeling (13), itching (12), irritation or tenderness (8), chemical burns (6), and increased sunburn (3). The frequency of such reports for skin exfoliating products that contain AHAs has been considerably lower in subsequent years. The more serious adverse reactions appear to occur most often with products that cause the greatest degree of exfoliation, such as "skin peelers."

Various studies confirmed previous industry studies indicating that applying AHAs to the skin results in increased UV sensitivity. After four weeks of AHA application, volunteers' sensitivity to skin reddening produced by UV increased by 18 percent. Similarly, the volunteers' sensitivity to UV-induced cellular damage doubled, on average, with considerable differences among individuals. Topical glycolic acid enhances photodamage by ultraviolet light.

However, the studies also indicated that this increase in sensitivity is reversible and does not last long after discontinuing use of the AHA cream. One week after the treatments were halted, researchers found no significant differences in UV sensitivity among the various skin sites.

Most AHAs are physiologic, natural, and non-toxic substances. All members of the group promote normal keratinization and desquamation.

Those with multiple hydroxyl groups are moisturizing antioxidants, and are especially gentle for sensitive skin.

The studies did not identify exactly how AHAs bring about the increased UV sensitivity, although the effects did not appear to involve dramatic increases in UV-induced damage to DNA in the skin.

Previous FDA studies have indicated that a cosmetic-type cream base caused an AHA to penetrate more deeply into the skin when compared to an AHA solution without the usual cosmetic ingredients. However, further studies will be needed to learn how much, if at all, those cosmetic-type ingredients influence the AHA-related effects on UV sensitivity.

TARTARIC ACID

The toxicology of simple alpha hydroxy carboxylic acids cluster is characterised by five compounds sharing the functional group defining the cluster name

Experimental data available for members of the simple alpha-hydroxy carboxylic acids indicate a low acute, repeated-dose, reproductive and developmental toxicity.

The simple alpha hydroxy carboxylic acids are eye and skin irritants but are not expected to be skin sensitisers.

Genotoxicity test data for two cluster members and a cancer bioassay for the calcium salt of propanoic acid, 2-hydroxy- yielded negative results and all other cluster members are considered to have little or no mutagenic or carcinogenic potential.

Acute oral toxicity of propanoic acid, 2-hydroxy- (2S)- (79-33-4) and propanoic acid, 2-hydroxy- (50-21-5) are low. The repeated-dose and developmental toxicity of the three tested simple alpha -hydroxy carboxylic acids is low. In EPA's High Production Volume Program, reproductive toxicity testing for propanoic acid, 2-hydroxy- (50-21-5) was deemed unnecessary because it is a normal component of human intermediary metabolism. Reproductive toxicity of acetic acid, 2-hydroxy- (79-14-1) has been tested and was found to be low. Low reproductive toxicity of the associated potassium salts is also expected to be low. Alpha-hydroxy carboxylic acids are severe eye irritants. Acetic acid, 2-hydroxy- (79-14-1), propanoic acid, 2-hydroxy- (2S)- (79-33-4) and propanoic acid, 2-hydroxy- (50-21-5) all produced positive skin irritation in rabbits. The members of this cluster are not expected to be skin sensitisers based on negative results in guinea pigs for both acetic acid, 2-hydroxy- (79-14-1) and propanoic acid, 2-hydroxy- (2S)- (79-33-4). Genotoxicity data for acetic acid, 2-hydroxy- (79-14-1) and propanoic acid, 2-hydroxy- (50-21-5) are negative, indicating that none of the cluster members are expected to be genotoxic. A 2-year drinking water study of the calcium salt of propanoic acid, 2-hydroxy- (50-21-5) in rats showed no evidence of carcinogenicity. An expert judgment based on mechanism-based structure-activity relationship considerations indicate little or no carcinogenic potential for any of the cluster members due to expected rapid metabolism/excretion and lack of genotoxic structural alert. This judgment is supported by the negative cancer and mutagenicity data for propanoic acid, 2-hydroxy- (50-21-5), which is considered a reasonable analogue to the rest of the cluster.

Some products containing alpha-hydroxy acids (AHAs) have been marketed for uses such as treating acne, removing scars, and lightening discolorations. Among these are some products marketed as "skin peelers," which may contain relatively high concentrations of AHAs or other acids and are designed to remove the outer layer of the skin

2-HYDROXYETHYL METHACRYLATE

Dermal (rabbit): >5000 mg/kg* Effects persist beyond 21 days

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

ACRYLIC ACID HOMOPOLYMER & TARTARIC ACID & 2-HYDROXYETHYL METHACRYLATE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal tymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	→	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	~
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

Version No: **7.1** Page **9** of **12** Issue Date: **10/03/2023**

Riva Bond LC liquid

Print Date: 21/11/2023

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)		Species Va		Value	Source
Riva Bond LC liquid	Not Available Not Available Not Available			Not Available	Not Available		
	Endpoint	Test Duration (hr)		Species Value		ue	Source
	EC50	72h		Algae or other aquatic plants	0.13	3-0.205mg/l	2
acrylic acid homopolymer	EC50	48h	(Crustacea	47n	ng/l	2
	EC10(ECx)	72h		Algae or other aquatic plants	0.0	3-0.031mg/l	2
	LC50	96h	I	Fish	27n	ng/l	2
	Endpoint	Test Duration (hr)		Species		Value	Source
tartaric acid	EC50	72h		Algae or other aquatic plants		51.404mg/l	2
	EC50	48h		Crustacea 93.313mg/l		93.313mg/l	2
	EC50	96h		Algae or other aquatic plants 23616mg/L		23616mg/L	2
	NOEC(ECx)	72h		Algae or other aquatic plants 3.125mg/l		2	
	LC50	96h		Fish >100mg/l		2	
	Endpoint	Test Duration (hr)		Species		Value	Source
	EC50	72h		Algae or other aquatic plants		345mg/l	2
2-hydroxyethyl methacrylate	EC50	48h		Crustacea 380mg/l		2	
	NOEC(ECx)	504h		Crustacea 24.1mg/l		24.1mg/l	2
	LC50	96h		Fish		>100mg/l	2
Legend:	Ecotox databas	,		l Substances - Ecotoxicological Informat d Assessment Data 6. NITE (Japan) - Bi	,	•	

Harmful to aquatic organisms.

May cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
acrylic acid homopolymer	LOW	LOW
tartaric acid	LOW	LOW
2-hydroxyethyl methacrylate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
acrylic acid homopolymer	LOW (LogKOW = 0.4415)
tartaric acid	LOW (LogKOW = -1.0017)
2-hydroxyethyl methacrylate	LOW (BCF = 1.54)

Mobility in soil

Ingredient	Mobility
acrylic acid homopolymer	HIGH (KOC = 1.201)
tartaric acid	HIGH (KOC = 1)
2-hydroxyethyl methacrylate	HIGH (KOC = 1.043)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

▶ DO NOT allow wash water from cleaning or process equipment to enter drains.

It may be necessary to collect all wash water for treatment before disposal.

In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

Where in doubt contact the responsible authority.

Consult State Land Waste Management Authority for disposal. Bury residue in an authorised landfill.

SECTION 14 Transport information

Labels Required

Version No: **7.1** Page **10** of **12**

Riva Bond LC liquid

Issue Date: 10/03/2023 Print Date: 21/11/2023

Marine Pollutant NO

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
acrylic acid homopolymer	Not Available
tartaric acid	Not Available
2-hydroxyethyl methacrylate	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
acrylic acid homopolymer	Not Available
tartaric acid	Not Available
2-hydroxyethyl methacrylate	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

acrylic acid homopolymer is found on the following regulatory lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

tartaric acid is found on the following regulatory lists

US DOE Temporary Emergency Exposure Limits (TEELs)

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

2-hydroxyethyl methacrylate is found on the following regulatory lists

US DOE Temporary Emergency Exposure Limits (TEELs)

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Additional Regulatory Information

Not Applicable

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Section 311/312 hazard categories

Flammable (Gases, Aerosols, Liquids, or Solids)	No
Gas under pressure	No
Explosive	No
Self-heating Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
In contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	Yes
Acute toxicity (any route of exposure)	Yes
Reproductive toxicity	No
Skin Corrosion or Irritation	Yes
Respiratory or Skin Sensitization	Yes
Serious eye damage or eye irritation	Yes
Specific target organ toxicity (single or repeated exposure)	Yes
Aspiration Hazard	No
Germ cell mutagenicity	No
Simple Asphyxiant	No

Page 11 of 12 Riva Bond LC liquid Issue Date: 10/03/2023 Print Date: 21/11/2023

Hazards Not Otherwise Classified No

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

State Regulations

US. California Proposition 65

None Reported

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (acrylic acid homopolymer; tartaric acid; 2-hydroxyethyl methacrylate)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	No (acrylic acid homopolymer)	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	10/03/2023
Initial Date	11/04/2016

SDS Version Summary

Version	Date of Update	Sections Updated
6.1	23/12/2022	Classification review due to GHS Revision change.
7.1	10/03/2023	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by SDI Limited using available literature

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ► IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit.
- IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ► BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European INventory of Existing Commercial chemical Substances
- ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ENCS: Existing and New Chemical Substances Inventory

Version No: 7.1 Page 12 of 12 Issue Date: 10/03/2023 Print Date: 21/11/2023

Riva Bond LC liquid

- ► KECI: Korea Existing Chemicals Inventory
- ► NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- ► TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ► NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

The information contained in the Safety Data Sheet is based on data considered to be accurate, however, no warranty is expressed or implied regarding the accuracy of the data or the results to be obtained from the use thereof.

Other information:

Prepared by: SDI Limited

3-15 Brunsdon Street, Bayswater Victoria, 3153, Australia Phone Number: +61 3 8727 7111

Department issuing SDS: Research and Development

Contact: Technical Director